Product Overview

Warm Up to Science offers student-centered engagement activities for immediate student involvement. Scientifically based research supports the use of this form of frequent conceptual exposure to enhance student understanding.

Activities are designed to require 5 to 10 minutes of class time and are written with the cognitive rigor demanded by the Texas Essential Knowledge and Skills (TEKS). Students must use critical thinking skills as they are presented with content-specific activities or with visual stimuli, including charts, graphs, and tables. Each activity may be used as an engagement for a new lesson, as a method to enhance retention, and as a means to support State of Texas Assessment of Academic Readiness (STAAR®) preparation. Activities are grouped by STAAR strands and sequenced by specific TEKS and student expectations.

The print version of *Warm Up to Science* is presented in an even-odd page format. The odd-numbered pages include activity answer keys and supportive teacher notes. The even-numbered pages present specific student activities that are easily photocopied. Use a photocopy setting to reproduce activities with graphics or photographs.

Most items are designed to be projected on a screen and for students to use their notebooks to record answers. However, certain items with more text would be best printed for students to mark up and for ease of reading.

The digital version of *Warm Up to Science* is presented in the opposite order of the print version. The student page comes before the teacher page. This design lessens the chances of students seeing answers first. After students work through the activity, the teacher can easily advance to the next screen for students to self-check their work if desired.

Why Begin Class with a Warm-Up?

Warm Up to Science incorporates instructional strategies that have been scientifically proven to enhance student achievement. Some examples of these effective instructional strategies identified in research focus on the teacher's ability to set high expectations for students, activate prior knowledge, provide feedback that reinforces learning, and allow for recognition of effort.

In this type of learning environment, students will have the opportunity to

- identify similarities and differences,
- summarize information,
- · practice process and critical thinking skills, and
- interpret nonlinguistic stimuli.

Warm Up to Science activities are designed to involve students in critical thinking processes. The activities focus on items that are content specific or items with visual

stimuli, including charts, graphs, and tables. Activities are written to be brief and targeted and can be used as formative assessment tools to gauge students' comprehension of a concept.

Notebooking

Keeping a science notebook also provides an effective way for students to save information about experiences for future use and to reflect upon those experiences (Marcarelli, 2010). The process of notebooking

- creates a space for students to reflect about experiences and encourages insight into activities,
- allows students opportunities to create,
- encourages students to process what they are learning,
- allows students' ideas and feelings to flow freely,
- gives a broader perspective over time,
- encourages students to reread and identify recurring themes,
- provides students with a safe format to communicate in a healthy and constructive way, and
- involves student expression and exploration of thought.

An interactive notebook is another tool students use in activating prior knowledge, recording learning experiences, and revising their thinking about the topic or concept. The input is the content learned, and the output is reflective thought gained through learning experiences. Benefits of using an interactive notebook include developing students' thinking skills, increasing communication, and differentiating instruction (Marcarelli, 2010).