Learning Goal_

Identify physical and chemical changes in matter in the digestive system.

Materials

For each student
2 unsalted crackers
timer or access to clock

Teacher Instruction

Engage

- Instruct students to chew the crackers without swallowing for 2 minutes.
- Students should notice that the crackers become sweeter. This is due to the release of an enzyme in the saliva that breaks down carbohydrates into glucose, a simple sugar.

Engage Page 194
Eat a Cracker
1. Your teacher will give you two unsalted crackers.
2. Chew the crackers in your mouth for 2 minutes without swallowing.
 Record your observations, including the initial taste of the crackers and their taste after 2 minutes.
• Why do we chew our food before swallowing? We chew food to break it into smaller pieces and increase the surface area of the food so it can

break down faster. We also chew food in order to swallow it easier.

Materials

For teacher • knife

For student groups

- gelatin
 Petri dish or portion cups with lids
- fresh (not canned) pineapple

Teacher Note

Explore

- Many meat tenderizers use enzymes from plants. Bromelain, the enzyme in pineapple, and papain, the enzyme in papaya, break down proteins. Other fruits such as kiwi and figs also contain enzymes that break down proteins. Gelatin is made from protein. Proteins are broken down into amino acids. This represents a chemical change.
- Canned pineapple slices will not work because the canning process destroys the enzyme in pineapples.

Advance Preparation_

- Prepare the gelatin mix according to box directions and pour into Petri dishes or portion cups prior to class. Place in refrigerator to aid in hardening the gelatin.
- Cut the pineapple into small pieces, approximately 3 cm x 3 cm.

Teacher Instruction_

- Ask students to hypothesize what will happen prior to placing the pineapple on the gelatin.
- Instruct students to complete the science notebook entry.

Explore Page 194		
Procedure		
 Write a hypothesis of what will happen when pineapple is placed on gelatin. Record your hypothesis in your science notebook. 		
Place the small piece of pineapple in the middle of the Petri dish containing gelatin.		
3. Over several minutes, record your observations.		
 Dispose of all materials according to your teacher's directions. Leave your area clean and organized. 		
Conclusion		
1. Do your results support your hypothesis? Student answers will vary. Accept all appropriate answers.		

2. Did a chemical change occur? A chemical change did occur. If yes, what evidence do you have? It appears that a new substance was formed. The gelatin, in contact with the pineapple, was broken down.

Advance Preparation.

RM 1

UNIT 5: Structure and Function of Organisms, Part 2 Lesson 1: Physical and Chemical Changes in Digestion

- Prepare a floor-size model of the digestive system: Set up the classroom so the middle of the room has two parallel pieces of masking tape down the length of the room. Depending on available space, the tapeline should be 2–4 feet apart.
- Prepare a large ball of "food" by placing popcorn in 10 plastic sandwich bags. Put the popcorn-filled bags into a large plastic bag to make a "food ball."

Teacher Instruction_

- Debrief the Explore activity. Students should observe that the gelatin area liquefies when it comes in contact with the pineapple.
- Read and discuss "Physical and Chemical Changes" using the following activities and facilitation questions.
 - Ask students to predict if swallowing food is impossible while standing on your head. Refer to the digestive system diagram and ask students how food travels around all the curves in the digestive organs.
 - Provide time for students to observe a demonstration of a marble being squeezed down a large piece of aquarium tubing to simulate how peristalsis squeezes food through the narrow tubelike esophagus.
 - Instruct students to model a "food ball" pushed through the digestive tract during peristalsis. Ask students to stand on either side of the floor-size model of the digestive system and move the large plastic bag, keeping it between the tape lines.
- Instruct students to complete the science notebook entry, relating the physical and chemical changes that occur during digestion.
- Review the science notebook entry with students.

CECCÓ region

- Read and discuss "The Excretory System."
- Guide students to complete the activity for creating a Human Body Book that includes a title for each diagram (*RM 1: Digestive System* and *RM 2: Excretory System*), description of the function of each system, and labeled and colored organs as specified in the student edition. Book entries will continue for the next several lessons.

Explain

Pages 195–198

Physical and Chemical Changes

Physical changes occur when a substance has a change in one of its physical properties, such as density, size, smell, or luster. Physical changes do not alter the chemical makeup of the substance. Examples of a physical change include tearing paper, adding food color to water, or chewing food to break it into smaller pieces.

If a substance has a change in its chemical properties, a chemical change occurs. New substances form during a chemical change. Examples of a chemical change include paper burning, organic material decomposing, and vinegar reacting with baking soda. Photosynthesis is an example of a chemical change that occurs in plants. Physical and chemical changes occur during digestion in humans.

The Digestive System

Our cells need energy and nutrients from food to survive and grow. Food that we eat must be broken down into molecules that can be used by our cells. Large molecules of carbohydrates, proteins, and fat are broken into even smaller molecules during digestion.

Digestion begins in the mouth. Chewing food physically breaks it into smaller pieces. The act of chewing also releases saliva from glands in the mouth. Saliva contains an enzyme that begins breaking down food molecules. Complex carbohydrates like starches are broken down into smaller simple sugars. The cracker tastes sweet because the complex starch is being broken down into glucose, a simple sugar.

The tongue moves the food particles around to shape it into a ball, called a bolus. The bolus is swallowed, moves down the esophagus by a squeezing action, and enters the stomach. The muscles of the stomach physically mix the bolus and gastric juices, which include hydrochloric acid and enzymes. The acid and enzymes continue to chemically break down the food into even smaller pieces to form a smooth paste called chyme.

DID YOU KNOW?

Hydrochloric acid breaks down food and also kills bacteria and viruses that are ingested with the food.

The chyme moves into the small intestine, and different digestive enzymes from the liver and pancreas continue breaking the molecules down. Approximately 6–8 hours after the food enters the mouth, it has been physically and chemically broken down into simple molecules that are easily absorbed into the blood through the small intestine's villi. The circulatory system then transports the digested food to the cells of the body.

Villi increase the surface area in the intestines for nutrient absorption.

Dangerous metabolic by-products such as hydrogen peroxide are chemically changed into less harmful substances by enzymes. Indigestible parts of chyme are moved along to the large intestine, where usable water and minerals are absorbed. Unusable waste material is expelled from the anus.

Create a table similar to the one below that describes whether physical changes, chemical changes, or both physical and chemical changes occur in each organ.

Organ	Physical, Chemical, or Physical and Chemical Changes
mouth	physical (chewing); chemical (enzymes)
esophagus	physical (food is squeezed and changes shape)
stomach	physical (mixing); chemical (digestion by HCl and enzymes)
small intestine	chemical (enzymes break down molecules)
large intestine	physical (water is removed)

The Excretory System

The daily activities of cells include chemical reactions that require energy from food. Chemical waste products are formed as a result of these activities and are moved out of the cells and into the blood. In order to maintain a balance in the body, the blood must be cleaned of these waste products. The kidneys are the main organs of the excretory system.

Figure 5.2. The Excretory System

The kidneys are bean-shaped organs that act as the main blood filters of the body. More than a quart of blood is cleaned every minute as blood passes through the filtering structures of the kidneys. Tiny tubelike structures called nephrons filter out waste materials and extra fluid from the blood. This liquid is sent to the bladder to be stored until it is released as urine.

Figure 5.3. The Kidney

Human Body Book

Following your teacher's instructions, create a book about the functions of the human body.

- Title each diagram.
- Describe in your book the functions of the system.
- On the diagrams provided by your teacher, label and color the following:

mouth—red esophagus—blue stomach—orange small intestine—brown liver—green large intestine—yellow kidneys—brown urinary bladder—yellow

Facilitation Questions_

- Describe the physical and chemical changes that occur during digestion. Physical changes occur when food is broken into smaller pieces, mixed with other substances, or when water is removed from wastes in the large intestine. Chemical changes occur when food material is broken down by a variety of enzymes and acids into smaller molecules usable by cells.
- Describe how food moves through the digestive system. The walls of the organs of the tubelike digestive system squeeze the food down, like squeezing a marble through a tube.
- Where does digestion start? Digestion begins in the mouth, where teeth tear and grind food into smaller pieces as saliva is added to help form the food into a ball called a bolus.
- What happens to food in the stomach? The chemical digestive and gastric juices, along with the physical churning of the stomach, break the food into a smooth paste called chyme.
- What is the main function of the small intestine? The small intestine continues to break down food. Absorption of nutrients into the blood also occurs here.
- How does the body rid itself of indigestible food? The large intestine removes extra water. The waste then passes to the rectum and is expelled through the anus.

Elaborate

Teacher Instruction

- Ask: Do you know someone who has had kidney dialysis treatments? Why are these treatments necessary? To clean the blood of its wastes if the kidneys are not functioning properly
- Ask: Why does blood need to be filtered, or "cleaned"? Waste materials from cellular respiration are transferred into the bloodstream; it is the way the cells get rid of their dangerous waste products.
- Set out the materials for the kidney model design in a central location.
- Instruct students to design and explain a filter system to clean muddy water, which represents blood.
- Allow students to participate in a gallery walk to view the different models.
- Ask each group to describe their kidney model and show a sample of the water filtered by their model.
- Review questions with students and utilize the facilitation questions.

Materials

- For student groups

 spaghetti
- strainerstea strainers
- coffee filters
- muddy water
- dialysis tubing
- additional
- materials at student request

Elaborate

Page 198

Using the materials provided by your teacher, design a filter to model how kidneys filter waste from the blood. The "blood" to be cleaned is muddy water.

In your science notebook, draw and label the filter and describe the efficiency of the filter.

Keep a small amount of muddy water to use as a control for comparisons. Participate in a gallery walk to observe filters created by other groups.

- 1. Compare the water before and after filtering through each one of the filters. Which one cleaned the water most efficiently? *Student answers will vary. Accept all appropriate answers.*
- 2. Which of the filters is most like the kidneys? Why? *Student answers will vary. Accept all appropriate answers*

The function of the kidneys is much more complex than your model. There is a delicate chemical balance that must be maintained in the body. The kidneys are "chemists" in that they measure amounts of chemicals your body needs, such as sodium, phosphorus, and potassium, and they make sure there is the correct amount in the blood for your body to function.

Facilitation Questions_

- What was the shape and structure of the most effective filter? Answers will vary, but a funnel shape that has several layers of filter paper is likely the most effective.
- The kidney is the main organ of the excretory system. How are the filtering units, called nephrons, like the filtering models made by you? *Both filter the "blood" to remove wastes.*
- How are they different? The nephrons filter wastes out of the blood, while our models filtered the dirt materials out of the water.

Evaluate

Teacher Instruction

- Instruct student groups to use the chart paper and markers to create a concept map showing physical and chemical changes that occur during digestion.
- Provide time for students to present their concept maps to the class using a gallery walk or other strategy.
- Instruct students to complete RM 3: Assessment—Physical and Chemical Changes in Digestion.

Concept Map Answer Key_

Student concept maps will vary. Accept all appropriate maps.

Materials

• RM 3

• markers

UNIT 5: Structure and Function of Organisms, Part 2 Lesson 1: Physical and Chemical Changes in Digestion

All of the following are examples of a che A photosynthesis B chewing food into smaller pieces

C vinegar reacting with baking sod

G Chemical changes H Physical and chemical chan

D enzymes breaking starches into sug Which type of changes occurs in the mo F Physical changes

Assessment—Physical and Chemical Changes in Dige cose the best answer for each question.

For each student

For student groups • chart paper

RM 3